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Abstract: A three-phase model of a deformable porous medium
saturated with a mixture of liquid and gas is presented. The deriva-
tion of the model is based on the theory of Hyperbolic Thermo-
dynamically Compatible systems (HTC) applied to a mixture of
solid, liquid and gas. The resulting governing equations are hyper-
bolic and satisfy the laws of thermodynamics (energy conservation
and entropy growth). Based on the formulated nonlinear model,
governing equations for modeling the propagation of small am-
plitude seismic waves are obtained. These equations have been
used to study the variability of wave �elds caused by temperature
changes in geological media with porous structures saturated with
a mixture of liquid and gas. Numerical examples are presented to
illustrate the peculiarities of wave propagation in media of vary-
ing porosity and di�erent ratios of liquid and gas fractions. The
�nite di�erence scheme on staggered grids has been used for the
numerical solution.
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1 Introduction

Modeling seismic wave �elds in the upper layers of the Earth's surface
depending on environmental conditions is an urgent task, in particular for
developing Arctic territories. For example, global warming with rising tem-
peratures leads to the thawing of permafrost, increasing the risk of disasters
associated with the loss of load-bearing capacity of permafrost layers. An-
other example is the possible sudden release of methane produced by the
decomposition of gas hydrate in sedimentary rocks as temperatures rise.

In this regard, there is a need to monitor possible events in the upper
layers of the earth when the temperature changes. One possible tool is to
track the variability of seismic wave �elds depending on the surrounding
conditions. To understand the processes of wave propagation in permafrost
formations and gas hydrate accumulations, it is necessary to have a mathe-
matical model that allows us to describe processes when external conditions
change, in particular, when temperature varies. As the temperature in-
creases, the structure of permafrost changes, the ice it contains melts, and
pores �lled with water, which may also contain gas, are formed. Similarly,
in gas hydrates, as the temperature increases, their degradation occurs with
the formation of pores containing both liquid and gaseous phases. Thus, to
simulate wave processes in the speci�ed structures, a model of wave propa-
gation in porous media saturated with a multiphase mixture of liquids and
gases is required. This paper deals with the modeling of wave processes in a
porous medium, which is considered to be a three-phase mixture consisting
of a deformable skeleton saturated with a mixture of liquid and gas.

Currently, the Biot approach [1, 2] is the most widely used to model pro-
cesses in saturated porous media; see, for example [3, 4] and the references
therein. In recent considerations [5], Biot's approach was used for the mod-
eling of three-phase systems where the e�ects of partial saturation and the
presence of di�erent immiscible �uids (e.g. oil and gas) were taken into ac-
count. This generalization of Biot's model requires the introduction of a
large number of additional material parameters, and it is unclear whether
this approach can be applied to more complex environments. In addition,
models based on Biot's theory are essentially linear, and it is problematic to
use them to describe nonlinear processes with large deformations.

In this paper, an approach based on the Hyperbolic Thermodynamically
Compatible (HTC) systems theory [6, 7] is used to describe multiphase
porous media. The class of HTC PDE systems includes many well-posed
models of continuum mechanics, and in addition the formalism of HTC sys-
tems theory can be applied to design new models of complex media; see [8]
and references therein. The governing di�erential equations of HTC mod-
els are well-posed, and their solutions satisfy the laws of thermodynamics
(energy conservation and entropy growth). The application of the theory
to the modeling of porous media can be found in [9]-[11]. This paper is a
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continuation of [12], [13] and its purpose is to study the properties of wave
�elds depending on the changes in temperature.

The paper is structured as follows. In Section 2, the general three-phase
model for the deformed porous medium saturated with the mixture of two
�uids is formulated. In Section 3, the linear PDE system for small-amplitude
wave propagation is derived from the general nonlinear system. Section 4
includes a series of numerical test simulations that demonstrate a signi�cant
in�uence of temperature variations on the properties of the wave �elds near
the freezing point of the saturating liquid. A numerical scheme obtained by
the staggered grid �nite di�erence approach is presented in the Appendix.

2 Master system of HTC governing equation for multiphase

compressible �ow in deformed porous medium

The general form of the governing equations that describe the �ow of a
mixture of compressible �uids in a deformable porous medium is based on a
generalization of the HTC model of a saturated porous medium presented in
[9]. The generalization can be formulated using the HTCmodel of multiphase
compressible �uid �ow [14] with an arbitrary number of components. We
limit ourselves to considering a saturating �uid consisting of a mixture of
two compressible �uids. Thus, we consider a three-phase medium which is
a mixture of a deformable solid and two �uids. Each phase is characterized
by its volume fraction in the mixture: α1 and α2 are the volume fractions
of �uids and α3 is the volume fraction of the deformable solid. Assume
that the saturation constraint α1 + α2 + α3 = 1 holds, which means that
porosity ϕ is de�ned as ϕ = α1 + α2 = 1 − α3. The master system for
formulating the model, presented below, is written in terms of mixture state
variables ρ = α1ρ1+α2ρ2+α3ρ3 - mixture density; c1 = α1ρ1/ρ, c2 = α2ρ2/ρ,
c3 = α3ρ3/ρ - phase mass fractions (c1+c2+c3 = 1); vi = c1v

i
1+c2v

i
2+c3v

i
3 -

mixture velocity; wi
1 = vi1−v

i
3, w

i
2 = vi2−v

i
3 - �uid velocities relative to solid

phase. The deformation of the medium is characterized by the distortion
matrix Aik of the entire mixture. The entropy s characterizes the thermal
state of the mixture under the assumption of a single entropy approximation,
which is applicable for small variations in phase temperatures.
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Thus, the complete master system reads as

∂ρvi

∂t
+
∂(ρvivk + ρ2Eρδik + wi

nEwk
n
+ ρAkiEAkj

)

∂xk
= 0, (1)

∂ρ

∂t
+
∂ρvk

∂xk
= 0, (2)

∂Aik

∂t
+
∂Aimv

m

∂xk
+ vj

(

∂Aik

∂xj
−
∂Aij

∂xk

)

= −Ψik, (3)

∂ρca
∂t

+
∂(ρcav

k + ρEwk
a
)

∂xk
= 0, a = 1, 2, (4)

∂wk
a

∂t
+
∂(wl

av
l + Eca)

∂xk
+ vl

(

∂wk
a

∂xl
−
∂wl

a

∂xk

)

= −Λk
a, a = 1, 2 (5)

∂ραa

∂t
+
∂ραav

k

∂xk
= −Φa, a = 1, 2, (6)

∂ρs

∂t
+
∂ρsvk

∂xk
= Q. (7)

This system consists of the following equations: (1) is the total momentum
conservation law for the mixture, (2) is the mass conservation law for the
mixture, (3) is the evolution equation for the distortion, (4) is the mass
conservation law for �uids (phases 1 and 2), (5) is the equation for the
velocities of �uids relative to the solid phase, (6) is the balance equation
for the volume fraction of �uids, (7) is the balance law for the entropy of
the mixture. Summation over repeated indices i, j, k, . . . = 1, 2, 3 is implied.
Summation over repeating phase indices a, b, c = 1, 2, 3 is not implied unless
otherwise indicated using the summation symbol.

The source terms −Ψik, −Λk
a, −Φa in equations (3), (5), (6) control the

dissipative processes in the mixture and correspond to inelastic deforma-
tions, interfacial friction, and phase pressure relaxation to a common value,
respectively. The source term Q in the entropy balance law (7) is the en-
tropy production term, which, as we will see below, is nonnegative due to
the de�nition of dissipative terms.

The main closing relation that de�nes the �uxes and source terms in the
system (1) - (7) is the generalized internal energy E, which depends on the
state variables ρ,Aik, c1, c2, α1, α2, w

k
1 , w

k
2 , s. The source terms in (3), (5),

(6) are de�ned via thermodynamic forces - derivatives of E with respect to
the state variables Eρ, EAkj

, Ewk
, Eca , Es. The formulas for calculating the

source terms are as follows:

Φa = ρ
2
∑

b=1

ϕabEαb
, Λk

a =
2
∑

b=1

λabEwk
b
, Ψik =

1

θ
EAik

, a = 1, 2. (8)
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Here, Φa describes the relaxation of phase pressures to a common value,
Λk
a simulates the interfacial friction between phases, and Ψik is the rate of

inelastic deformation of the entire mixture. Relaxation parameters ϕab, λab,
θ may depend on state variables, and ϕab, λab are assumed to be symmetric
with respect to a and b due to Onsager's principle. The source of entropy
production Q in the law of entropy balance is expressed as a quadratic form
of thermodynamic forces

Q =
ρ

Es

(

2
∑

a=1

2
∑

b=1

ϕabEαaEαb
+

2
∑

a=1

2
∑

b=1

λabEwk
a
Ewk

b
+

1

θ
EAik

EAik

)

≥ 0.

(9)
The positive de�niteness of the matrices ϕab, λab and the positivity of θ en-
sure the positivity of Q, which means that the second law of thermodynamics
is satis�ed.

The functions describing the thermodynamic state of the medium are cal-
culated using the derivatives of the generalized internal energy, the pressure
of the mixture reads as p = ρ2Eρ, and the shear stress reads as σij =
−ρAkiEAkj

.
The energy conservation equation (�rst law of thermodynamics) holds for

the system (1) - (7) in the form

∂ρ(E + vivi/2)

∂t
+
∂(ρvk(E + vivi/2) + Πk)

∂xk
= 0, (10)

where Πk = vkp− viσik +
2
∑

a=1
ρvlwl

aEwk
a
+

2
∑

a=1
ρEcaEwk

a
is the energy �ux.

The presented system (1) - (7) can be transformed to a symmetric form
using generating variables and generating potential, as is usually done in
Symmetric Hyperbolic Thermodynamically Compatible (SHTC) theory [8].
If we assume that this system belongs to the class of SHTC systems, then
it requires convexity of the generalized internal energy, although proving
convexity is a very di�cult task. However, if the energy is not convex and
the Hessian matrix consisting of the second derivatives of the energy with
respect to the state variables has zero eigenvalues, then the system is still
hyperbolic, since the equations have an independent set of eigenvectors and
belong to Hyperbolic Thermodynamically Compatible (HTC) class.

In the paper, we consider a three-phase model of a deformable porous
medium saturated with a mixture of two �uids, and the closing relations for
such a mixture are presented below. As is noted above, the main closing
relation for (1) - (7) is the generalized energy E and we de�ne it as a sum
of the kinematic energy of the relative motion E1, the energy of volumetric
deformation E2, and the energy of shear deformation E3:

E = E1(c1, c2, w1, w2) + E2(α1, α2, c1, c2, ρ, s) + E3(c1, c2, ρ, s, A), (11)
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where

E1 =
1

2

2
∑

a=1

caw
i
aw

i
a −

1

2
(

2
∑

a=1

caw
i
a)

2, (12)

ρE2(α1, α2, c1, c2, ρ, s) = α1ρ1e1(ρ1, s)+α2ρ2e2(ρ2, s)+α3ρ3e3(ρ3, s), (13)

E3 =
1

8
c2s,M

(

tr(g2)− 3
)

. (14)

The energy of relative motion (12) can be determined in a single way if
the kinetic energy of the motion of the mixture is de�ned as the sum of the
kinetic energies of the phases because the following identity takes place

ρ

(

vivi

2
+ E1

)

= α1ρ1
vi1v

i
1

2
+ α2ρ2

vi2v
i
2

2
+ α3ρ3

vi3v
i
3

2
. (15)

We take the volumetric deformation energy (13) as the mass-averaged en-
ergy of the phases ea(ρa, s), (a = 1, 2, 3). For calculation of thermodynamic
forces Eρ, Eca , Eαa it is convenient to consider an equivalent form of (13)

E2(α1, α2, c1, c2, ρ, s) = c1e1

(

ρc1
α1

, s

)

+ c2e2

(

ρc2
α2

, s

)

+ c3e3

(

ρc3
α3

, s

)

.

(16)
The energy E3 of shear deformation depends on the distortion of the entire

mixture through the normalized Finger strain tensor g: g = G/(detG)1/3,
G = ATA, and cs,M is the squared shear sound velocity of the mixture. The
shear sound velocity of the mixture should depend on the phase ratio and is
de�ned by the simple mixture rule

c2s,M = c1c
2
s,1 + c2c

2
s,2 + c3c

2
s,3, (17)

where cs,a, a = 1, 2, 3 are phase shear sound velocities connected with phase
shear moduli µa by relation c2s,a = µa/ρa. In our case, we assume that the
saturating �uids are inviscid and that their shear moduli are zero µa = 0, a =
1, 2. Thus, the mixture shear sound velocity reads as

c2s,M = c3c
2
s,3 = (1− c1 − c2)c

2
s,3. (18)

and the �uids viscosity a�ects only the interfacial friction coe�cients.
Thermodynamic forces Eαa , Eρ, EAkj

, Ewk
a
, Eca , p = ρ2Eρ,

σij = −ρAkiEAkj
, T = Es can be computed with the use of de�nition of

generalized internal energy (11) - (18)

Eαa = p3−pa
ρ (a = 1, 2), p = ρ2Eρ = α1p1 + α2p2 + α3p3,

∂E
∂A =

c2s,M
2 A−T

(

g2 − tr(g2)
3 I

)

, σij = −
ρc2s,M

2

(

gikgkj −
1
3gmngnmδij

)

,

Ewi
a
= caw

i
a − ca(c1w

i
1 + c2w

i
2) = ca(v

i
a − vi), (19)

Eca = ea +
pa
ρa

− e3 −
p3
ρ3

− 1
c3
E3 +

1
2w

i
a(w

i
a − c1w

i
1 − c2w

i
2), (a = 1, 2),

Es = T = c1
∂e1
∂s + c2

∂e2
∂s + c3

∂e3
∂s .



MODELING SEISMIC PROPERTIES OF FROZEN MEDIA B209

In the next section, when deriving equations for small-amplitude wave
�elds, we will use the equivalent (1) - (7) system of equations written in
terms of phase state variables:

∂(α1ρ1v
i
1 + α2ρ2v

i
2 + α3ρ3v

i
2)

∂t
+

∂(α1ρ1v
i
1v

k
1 + α2ρ2v

i
2v

k
2 + α3ρ3v

i
3v

k
3 + pδik − σik)

∂xk
= 0, (20a)

∂Aik

∂t
+
∂Aijv

j

∂xk
+ vj

(

∂Aik

∂xj
−
∂Aij

∂xk

)

= −
ψik

θ
, (20b)

∂α1ρ1
∂t

+
∂α1ρ1v

k
1

∂xk
= 0, (20c)

∂α2ρ2
∂t

+
∂α2ρ2v

k
2

∂xk
= 0, (20d)

∂α3ρ3
∂t

+
∂α3ρ3v

k
3

∂xk
= 0, (20e)

∂wk
1

∂t
+
∂
(

(vj1v
j
1 − vj3v

j
3)/2 + e1 + p1/ρ1 − e3 − p3/ρ3 + E3/c3

)

∂xk
+

vl
(

∂wk
1

∂xl
−
∂wl

1

∂xk

)

= −Λk
1, (20f)

∂wk
2

∂t
+
∂
(

(vj2v
j
2 − vj3v

j
3)/2 + e2 + p2/ρ2 − e3 − p3/ρ3 + E3/c3

)

∂xk
+

vl
(

∂wk
2

∂xl
−
∂wl

2

∂xk

)

= −Λk
2, (20g)

∂ρα1

∂t
+
∂ρα1v

k

∂xk
= −Φ1, (20h)

∂ρα2

∂t
+
∂ρα1v

k

∂xk
= −Φ2, (20i)

∂ρs

∂t
+
∂ρsvk

∂xk
=

ρ

T

(

2
∑

a=1

2
∑

b=1

ϕabEαaEαb
+

2
∑

a=1

2
∑

b=1

λabEwk
a
Ewk

b
+

1

θ
EAik

EAik

)

≥ 0.(20j)



B210 G. RESHETOVA AND E. ROMENSKI

3 Governing equations for wave propagation in the porous

medium saturated by two-�uid mixture

Our main goal is to study the propagation of small-amplitude waves in
a stationary medium, and in this section we derive equations to describe
wave processes. The derivation method is based on a standard linearization
procedure similar to that described in [9] for a simpler model of an elastic
porous medium saturated with a single �uid.

We are particularly interested in studying the variability of wave �elds
with changes in temperature near the freezing point of the saturating liq-
uid. The rheological properties of a porous medium near the freezing points
of the saturating liquid can vary greatly even with small changes in tem-
perature. An initially "frozen" medium such as permafrost or gas hydrate
becomes porous as the temperature increases, and the pores are �lled with
liquid. With an increase in temperature, the size of the pores increases and
the liquid can release gas. This is why we are considering a three-phase
medium, a mixture of solid, liquid, and gas phases. It is obvious that the
material parameters of the medium, namely, density, speed of sound, etc.,
depend on temperature. We want to obtain equations for wave �elds that
are applicable at di�erent temperatures, so we will assume that the lineariza-
tion is performed for a medium in equilibrium at a �xed temperature, which
can have di�erent values. Since the range of temperature variations near
the freezing point of a liquid under consideration is only a few degrees, we
neglect the change in density and sound speed with temperature variation
and consider them constant. Porosity can increase signi�cantly from 0 as
the saturating liquid melts, so we study the dependence of wave �elds only
on temperature changes in porosity and material parameters that depend
signi�cantly on it.

Thus, let us assume that in a stationary initial motionless state of a
medium with a given porosity, the shear stress tensor is zero, the pressure is
equal to the external atmospheric pressure, and the temperature corresponds
to a constant external temperature and can vary. The given initial state of
the medium corresponds to the values of its state variables:

αa = α0
a, ρa = ρ0a, via = 0, s = s0, Aij = A0

ij , (21)

moreover, the constants ρ01, ρ
0
2, ρ

0
3, s0 are determined from the conditions of

external equilibrium p1(ρ
0
1, s0) = p2(ρ

0
2, s0) = p3(ρ

0
3, s0) = p0, T (ρ

0
1, ρ

0
2, s0) =

T0, where p0, T0 are the external pressure and temperature.
We are interested in temperature variations in the range of several degrees

near the freezing point of the saturating liquid. In such a range of tempera-
ture changes, the density variations of the three phases are negligibly small
(note that the coe�cient of volumetric thermal expansions of gas and liquid
are of the order of 10−3 − 10−4K−1, and the coe�cient of linear expansion
of the skeleton material is of the order of 10−5K−1). Therefore, in order
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to simplify the derived equations, we assume that a change in the exter-
nal temperature does not lead to a change in the phase densities and we will
assume that ρ01, ρ

0
2, ρ

0
3 are constants independent of temperature and, accord-

ingly, the deformed state of the medium corresponds to the distortion values
A0

ij = δij for an unstressed state of the medium. We can also assume, due
to the smallness of the change in initial density with temperature variations,
that the initial temperature corresponds to the initial entropy s0 = 0.

The solution to the system (1) - (7) can be found as a small perturbation
of the initial state:

αk = α0
k+∆αk, ρk = ρ0k+∆ρk, v

i
k = ∆vik, s = s0+∆s,Aij = δij+∆Aij . (22)

Note that ∆α1+∆α2+∆α3 = 0, since α1+α2+α3 = 1 and α0
1+α

0
2+α

0
3 = 1.

Substituting this perturbation into (1) - (7) and discarding perturbations
of the solution of order ∆2 and higher, we obtain the following system

∂(α0
1ρ

0
1∆v

i
1 + α0

2ρ
0
2∆v

i
2 + α0

3ρ
0
3∆v

i
3)

∂t
+
∂(∆pδik −∆σik)

∂xk
= 0, (23a)

∂∆Aik

∂t
+
∂∆vj

∂xk
= −

∆EAik

θ
, (23b)

∂(α0
1∆ρ1 + ρ01∆α1)

∂t
+
∂(α0

1ρ
0
1∆v

k
1 )

∂xk
= 0, (23c)

∂(α0
2∆ρ2 + ρ02∆α2)

∂t
+
∂(α0

2ρ
0
2∆v

k
2 )

∂xk
= 0, (23d)

∂(α0
3∆ρ3 + ρ03∆α3)

∂t
+
∂(α0

3ρ
0
3∆v

k
3 )

∂xk
= 0, (23e)

∂(∆vk1 −∆vk3 )

∂t
+
∂
(

∆p1/ρ
0
1 −∆p3/ρ

0
3

)

∂xk
= −∆Λk

1, (23f)

∂(∆vk2 −∆vk3 )

∂t
+
∂
(

∆p2/ρ
0
2 −∆p3/ρ

0
3

)

∂xk
= −∆Λk

2, (23g)

∂∆α1

∂t
= −∆Φ1, (23h)

∂∆α2

∂t
= −∆Φ1, (23i)

∂∆s

∂t
= 0. (23j)
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Here∆p = ∆(α1p1 + α2p2 + α3p3), ∆σij = −∆
(

c3
ρc2

s,3

2

(

gikgkj −
1

3
glkgklδij

)

)

,

∆Λk
a = ∆

(

∑2
b=1 λabEwk

b

)

, ∆EA = ∆

(

c3
c2s,3
2 A−T

(

g2 − tr(g2)
3 I

)

)

, ∆Φa =

∆
(

ρ
∑2

b=1 ϕabEαb

)

.

It should be noted immediately that from equation (23j) it follows that
∆s = 0 and equation (23j) can be neglected. Let us make a further simplify-
ing assumption about the instantaneous relaxation of the phase pressures to
a common value. Since the pressures are equalized due to the propagation
of waves and their re�ection from the phase boundaries, and the charac-
teristic scale of the pore space is small compared to the scales of seismic
waves, this assumption is valid. Instantaneous pressure relaxation means
∆p1 = ∆p2 = ∆p3, and we obtain for the phase densities perturbations

K1

ρ01
∆ρ1 =

K2

ρ02
∆ρ2 =

K3

ρ03
∆ρ2, (24)

where K1 = ρ01
∂p1
∂ρ1

|ρ1=ρ0
1
,s=0, K2 = ρ02

∂p2
∂ρ2

|ρ2=ρ0
2
,s=0, K3 = ρ03

∂p3
∂ρ3

|ρ3=ρ0
3
,s=0 are

the phase bulk moduli.
In the complete modi�ed PDE system for wave propagation, two equations

(23h), (23i) for perturbations of volume fractions should be replaced by the
algebraic equation (24). As a result, to derive PDEs for ∆α1, ∆α2, ∆ρ1,
∆ρ2 and ∆ρ3 it is necessary to use the equations (23c) - (23e) and (24).

For interphase friction terms, using (19) and assuming that λab is constant,

we obtain ∆Λk
a =

∑2
b=1 λab∆Ewk

b
=
∑2

b=1 λab(c
0
a∆w

i
a−c

0
a(c1∆w

i
1+c2∆w

i
2)),

where ∆wi
a = ∆via −∆vi3, c

0
a = α0

aρ
0
a/ρ

0, ρ0 = α0
1ρ

0
1 + α0

2ρ
0
2 + α0

3ρ
0
3.

Since we are dealing with small deformations of the medium, we in-
troduce a new state variable ε = 1

2(∆A + ∆AT ) - the small strain ten-
sor. For in�nitesimal deformations, the Finger strain tensor reads G =
I + 2ε, and then the normalized Finger tensor can be computed as ∆g =
2(ε − 1

3 tr(ε)I. To calculate ∆EA, one needs to use ∆g = 2(ε − 1
3 tr(ε)I)

and ∆
(

g2 − tr(g2)
3 I

)

= 2
(

∆g − 1
3 tr(∆g)I

)

. Finally, we obtain ∆EA =

2c03c
2
s,3(ε −

1
3 tr(ε)I). Similarly, one can compute the perturbation of the

stress tensor ∆σij = 2c03c
2
s,3(εij −

1
3(ε11 + ε22 + ε33)δij).

Since we now use the small strain tensor εij as a measure of deformation,
instead of the distortion equation, we can use the equation for εij in the form
∂εik
∂t + 1

2

(

∂∆vj

∂xk
+ ∂∆vk

∂xj

)

= −
∆EAik

θ , which can be derived using the de�nition

of εij and equation (23b).
We can now write the complete system for wave propagation by introduc-

ing the following new notation for the wave�eld variables:
V i = c01∆v

i
1 + c02∆v

i
2 + c03∆v

i
3 - total velocity of the three-phase mixture;

W k
1 = ∆vk1 − ∆vk3 , W k

2 = ∆vk2 − ∆vk3 - relative velocities,
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Σik = 2c03c
2
s,3

(

εij −
δij
3 (ε11 + ε22 + ε33)

)

, - shear stress, P = ∆p1 =

K1∆ρ1 = ∆p2 = K2∆ρ2 = ∆p3 = K3∆ρ3 - pressure of the mixture.
Using the above notations, we arrive at the following system of linear

di�erential equations:

ρ0
∂V i

∂t
+
∂P

∂xi
−
∂Σik

∂xk
= Φi, (25a)

∂W i
1

∂t
+

(

1

ρ01
−

1

ρ03

)

∂P

∂xi
= −Λi

1, (25b)

∂W i
2

∂t
+

(

1

ρ02
−

1

ρ03

)

∂P

∂xi
= −Λi

2, (25c)

∂P

∂t
+K

∂V k

∂xk
+K ′

1

∂W k
1

∂xk
+K ′

2

∂W k
2

∂xk
= 0, (25d)

∂Σik

∂t
− µ

((

∂V i

∂xk
+
∂V k

∂xi

)

−
2

3
δik

(

∂V 1

∂x1
+
∂V 2

∂x2
+
∂V 3

∂x3

))

= −
Σik

τ
,

(25e)

where c0a = α0
aρ

0
a/ρ0, (a = 1, 2), ρ0 = α0

1ρ
0
1 + α0

2ρ
0
2 + α0

3ρ
0
3,

K =
(

α0
1

K1
+

α0
2

K2
+

α0
3

K3

)

−1
is the bulk modulus of the mixture and K ′

a =

(α0
a − c0a)K, a = 1, 2. Φi de�nes the external force source that excites the

wave �eld.
Interfacial friction terms read as Λi

1 = λ11c
0
1(V

i
1 − V i) + λ12c

0
2(V

i
2 − V i),

Λi
2 = λ21c

0
1(V

i
1−V

i)+λ22c
0
2(V

i
2−V

i), V i
1 = ∆vi1, V

i
2 = ∆vi2. Their equivalent

form can be written in terms of W i
a as

Λi
1 = λ′11W

i
1 + λ′12W

i
2, Λi

2 = λ′21W
i
1 + λ′22W

i
2, (26a)

(

λ′11 λ′12
λ′21 λ′22

)

=

(

λ11 λ12
λ21 λ22

)(

(1− c01)c
0
1 −c01c

0
2

−c01c
0
2 (1− c02)c

0
2

)

. (26b)

Below we will clarify the choice of λij for a solid-liquid-gas mixture.

3.1. Hyperbolicity and energy dissipation. The derived linear system
(25) for small amplitude wave propagation in deformed porous medium satu-
rated with a mixture of two �uids is hyperbolic (symmetric hyperbolic in the
sense of Friedrichs). The interfacial friction terms in equations (25b), (25c)
and the shear stress relaxation term in (25e) are dissipative, which means
that they provide wave attenuation and dissipation of the energy.

Symmetric hyperbolicity can be proved by the standard procedure of
SHTC theory. To do this, it is necessary to de�ne the generating poten-
tial and the generating variables (see, for example, [6], [8]). The energy (11)
reduced to the case of small perturbations for the system (25) can be taken
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in the form

E = ρ0
ViVi
2

+
ρ0
2

2
∑

a=1

c0aW
i
aW

i
a −

ρ0
2
(

2
∑

a=1

c0aW
i
a)

2 +
1

2K
P 2 +

ΣijΣij

2µ
. (27)

If we multiply equations (25a) - (25e) by EV i = V i, EW i
a
= ρ0(c

0
aW

i
a −

c0a(c
0
1W

i
1 + c02W

i
2)), EP = P/K, EΣik

= Σik/µ accordingly and sum all up,
then we obtain the energy balance law in the form

∂E

∂t
+
∂Πk

∂xk
= −Q, (28)

where Πk = PV k + (α0
a − c0a)PW

k
a − ΣikV

i is the energy �ux and Q =
EW i

a
Λi
a +

1
µτΣikΣik is the energy loss.

Following SHTC theory, we introduce the generating variables as listed
factors to obtain the law of energy conservation:

(q1, q2, ..., q19) = (EV i , EW i
1
, EW i

2
, EP , EΣik

). (29)

Then with the use of conservative variables

(Lq1 , Lq2 , ..., Lq16) = (ρ0V
i,W i

1,W
i
2, P,Σik) (30)

the generating potential L = qiLqi − E = E can be calculated.
In terms of generating variables and potential, the system (25) can be

written in the Godunov form

∂Lqi

∂t
+
∂Mk

qi

∂xk
= Si, (31)

where the potentialsMk that generate the �uxes can be calculated similarly
to L: Mk = qiM

k
qi −Πk = Πk. Si are the source terms corresponding to the

equations in (25).
It is clear that the system (31) can be written in the equivalent quasilinear

form

Lqiqj

∂qj
∂t

+Mk
qiqj

∂qj
∂xk

= Si, (32)

with symmetric Hessian matrices at the derivatives. If the matrix Lqiqj is
positive de�nite, then (32) is a symmetric hyperbolic system in the sense of
Friedrichs. The positive de�niteness of Lqiqj is easy to prove since the energy
(27) is a convex function.

Although the linear system of partial di�erential equations (25) is hyper-
bolic, its eigenvalues cannot be found explicitly. Let us just note that in the
presented model, as we will see in numerical section, there are three velocities
of sound, corresponding to two longitudinal and one transverse waves.

The energy loss is described by the negative source term −Q in the energy
balance law (28), arising from interfacial friction and shear stress relaxation,
taken into account by the sources in (25b), (25c), (25e). These sources
produce dissipation, which leads to wave attenuation.

A porous medium saturated with a multiphase �uid has complex rheolog-
ical properties that a�ect the attenuation of seismic waves. The rheology
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of such a medium depends on its structure, the properties of the skeleton,
and saturating �uids, which in turn may depend on external conditions.
Important factors leading to the dissipation of seismic energy in a porous
deformable medium are interfacial friction and relaxation of shear stresses.
For the processes of interest to us, near the freezing point of the saturat-
ing liquid, a change in porosity occurs, which a�ects both the magnitude of
interfacial friction and the rate of stress relaxation. The numerical test prob-
lems considered below show how a change in porosity a�ects the properties
of seismic waves and their attenuation.

3.2. Interfacial friction and shear relaxation terms. Let us discuss
the choice of source terms for interfacial friction and their speci�c form for
a gas-liquid-solid mixture. The terms of the friction source in the equations
for the relative velocities read Λi

1 = λ11c
0
1(V

i
1 − V i) + λ12c

0
2(V

i
2 − V i), Λi

2 =
λ21c

0
1(V

i
1 −V i)+λ22c

0
2(V

i
2 −V i) and include friction via di�erences between

the phase velocities V i
a and the velocity of the mixture V i. Since we do not

have information about the in�uence of the friction force of one �uid on the
friction force of the other �uid, we assume λ12 = 0, λ21 = 0. This assumption
gives us

Λi
1 = λ11(c

0
1(1− c

0
1)W

i
1− c

0
1c

0
2W

i
2),Λ

i
2 = λ22(−c

0
1c

0
2W

i
1+ c

0
2(1− c

0
2)W

i
2). (33)

Friction coe�cients must be determined for each speci�c case, which re-
quires both theoretical and experimental studies. Therefore, we take the
coe�cients based on empirical assumptions, limiting ourselves only to a qual-
itative study of wave �elds. Let us assign numbers 1, 2 and 3 to the gas,
liquid, and solid phases, respectively. In the numerical examples below, we
assume that the friction coe�cient between the gas and an entire mixture
is much lower than between the liquid and the entire mixture, which means
that λ11 << λ22. Since in the absence of a gas phase (c01 = 0) the coe�-
cient λ22 models the friction between a liquid and a solid, it can be taken as
λ22 = θ−1

2 with θ2 from [9]. Note that in [9] friction force is determined by a
comparison with Biot's model. In the same way, for convenience, we denote
λ11 = θ−1

1 and use these parameters in the numerical simulations (see Tables
1 and 2).

As for the shear stress relaxation time, there are no data for porous me-
dia that could be used to determine its value and its dependence on state
variables. It is intuitively clear that for a porous medium with the same
skeleton material, with increasing porosity the material becomes "softer"
and the relaxation time should decrease.

Therefore, in the following, using numerical examples, we simply study
the properties of wave �elds at di�erent gas-to-liquid ratios and di�erent
relaxation times. Of course, to solve practical problems, research is required,
both theoretical and experimental, to determine the material parameters of
porous media, including relaxation times and interfacial friction coe�cients.
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Table 1. Physical parameters used for simulation in homo-
geneous test cases.

State Property Parameters Value Unit

Fluid1:
(air) Fluid density ρ01 1.225 kg/m3

Sound velocity c1 330 m/s
Bulk modulus K1 = ρ01c

2
1 0.00013 GPa

Fluid2:
(water) Fluid density ρ02 1040 kg/m3

Sound velocity c2 1500 m/s
Bulk modulus K2 = ρ02c

2
2 2.34 GPa

Solid phase: Solid density ρ03 2500 kg/m3

P-wave velocity vp 6155 m/s
S-wave velocity vs 3787 m/s
Bulk velocity cs 4332 m/s
Bulk modulus K3 = ρ03c

2
s 46.91 GPa

Shear modulus µ = ρ03v
2
s 35.85 GPa

Dissipative
parameters: Interphase friction θ1 3.36 · 10−12 s

Interphase friction θ2 3.36 · 10−7 s
Relaxation time τ 10−6 s

4 Numerical simulations

In this section, we numerically analyze the main features of small-ampli-
tude wave propagation in a porous medium associated with the presence of a
saturated compressible mixture of two �uids. For the numerical modeling of
the system (25), we use �nite di�erence methods of a staggered grid [15]-[17],
which are well suited to solve symmetric hyperbolic �rst-order PDE systems
in the velocity-stress formulation. We have developed and implemented an
accurate fourth-order scheme in spatial variables and second-order in time
for the simulation of wave propagation in a porous medium. The details of
this scheme are given in the Appendix.

Test 1. We start the veri�cation of the (25) model by considering a two-
dimensional homogeneous poroelastic medium saturated with a mixture of
water and gas in a solid deformable skeleton. The properties of the skeleton
and pore �uids are given in Table 1.

Simulations were performed for a computational model of 2200∗2200 grid
nodes with a uniform spatial grid cell of 2.5 · 10−5 m and a time step of
3.3 ·10−9 s. The volumetric type source with a frequency of f0 = 1 MHz was
placed in the centre of the computational model. To excite the volumetric
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type source, source terms were added to the right hand sides of the shear
stress relaxation equations (25e) for both components Σ11,Σ22. A source
function was de�ned as the product of the Dirac delta function in space and
the pulse function of Ricker wavelet f(t) in time:

f(t) = (1− 2π2f20 (t− t0)
2)exp[−π2f20 (t− t0)

2], (34)

where f0 is the source frequency and t0 is the time wavelet delay, equal to
t0 = 1/f0 s in our considerations.

Let us analyze the e�ect of changing the volume of the saturating �uids
on the wave �eld characteristics. If only one phase is assumed in the model
(25) (there are no other two phases), the system of equations must describe
a purely elastic medium with given seismic velocities. Depending on the
chosen phase, it can be pure solid (α0

3 = 1), pure air (α0
1 = 1), or pure water

(α0
2 = 1). To verify this, we present the results of the numerical simulations

in Fig. 1, where the wave �eld snapshots of the norm of the total mixture
velocity vector ||V ||2 at time t = 5 · 10−6 s are shown for di�erent cases
of the phase volume ratio in the poroelastic model. In order to eliminate
the in�uence of the terms of friction between phases and stress relaxation
included as right-hand terms in the equation system (25), we �rst set them
to zero.

As expected, the obtained velocities correspond to the longitudinal wave
velocity for a pure solid (vp = 6155 m/s) and the sound velocities for pure
air (c1 = 330 m/s) and water (c2 = 1500 m/s) given in Table 1. When
estimating velocities, we add a Ricker wavelet delay equal to 1 · 10−6 s.

Note that in the case of a volumetric source, only one compressional wave
appears in a pure solid, water or air (Fig. 1a-1c), while in the poroelastic
case we observe the appearance of fast and slow (Biot mode) compressional
waves (Fig. 1d). The estimated velocities of 3817 m/s for the fast P-wave
and 329 m/s for the slow P-wave agree with the velocity dispersion curves
obtained using the standard methodology described in [9].

Test 2. Let us now analyze the in�uence of the phase ratio in the medium
on the formation of the wave �eld. We �nd it interesting to consider the e�ect
of the presence of air on the velocity of seismic waves. For this purpose, we
consider the poroelastic case (solid+air) with di�erent contents of the air
phase α0

1 and vanished relaxation terms θ1 = θ2 = 0, τ = ∞.
Horizontal slices of the velocity V 2 at x2 = 0 for di�erent α0

1 are shown
in Fig. 2. As can be seen, at α0

1 = 0, the wave velocity corresponds to
the velocity of the P wave in an elastic medium. The velocity of the P-wave
decreases as soon as even a small amount of air is present, while its amplitude
increases. In addition, the slow Biot P-wave appears. To clarify the details,
we show in Fig. 3 the zoomed fragment of Fig. 2. Note that the amplitude
of the Bio wave is inversely proportional to the value of alpha.

Test 3. Let us now analyze the in�uence of interfacial friction on the gen-
eration of the wave �eld. To do this, compare the horizontal wave �eld slices
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(d) Poroelastic case
(solid+water):
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(e) Poroelastic case
(solid+air):
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(f) Poroelastic case
(solid+water+air):

α0
1 = 0.001, α0

2 = 0.3, α0
3 = 0.699

Figure 1. Snapshots of the wave �eld velocity ||V ||2 for di�erent
media: pure air (a), pure water (b), pure solid (c), porous medium
with solid and water (d), porous medium with solid and air (e) and

with solid, water and air (f) at time t = 5 · 10−6 s.
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Figure 2. The horizontal slice of V 2 at x2 = 0 for di�erent
α0
1 for the solid-air porous medium with parameters from Ta-

ble 1 and volume phase fractions α0
1 = 0, 0.1, 0.01, 0.001 and

α0
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Figure 3. Zoom version of Fig. 2.
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Figure 4. The horizontal slice of V 2 at x2 = 0 for the solid-
water porous medium with parameters from Table 1, volume
phase fractions α0

2 = 0.3, α0
3 = 0.7, realxation time τ = 5 ·

10−7 and di�erent values of interfacial friction θ2.

Figure 5. Zoom version of Fig. 4.



MODELING SEISMIC PROPERTIES OF FROZEN MEDIA B221

-0.02 -0.01 0 0.01 0.02

-5

0

5

10-4

=   10 -7

=5*10 -6

=   10 -6

=0

Figure 6. The horizontal slice of V 2 at x2 = 0 for the solid-
water porous medium with parameters from Table 1, inter-
phase friction θ2 = 3.36 · 10−7, θ1 = 3.36 · 10−12 and di�erent
values of realxation time τ .

-4 -2 0 2 4

10-3

-2

0

2

4

10-4

=   10 -7

=5*10 -6

=   10 -6

=0

Figure 7. Zoom version of Fig. 7.
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Table 2. Physical parameters used for simulation model
with Talik Layer.

State Property Parameters Value Unit

Active layer:
(solid phase only) P-wave velocity vp 1800 m/s

S-wave velocity vs 900 m/s
Density ρ 1500 kg/m3

Unfrozen layer:
(solid phase only) P-wave velocity vp 2400 m/s

S-wave velocity vs 1800 m/s
Density ρ 2000 kg/m3

Permafrost layer:
(solid phase only) P-wave velocity vp 3800 m/s

S-wave velocity vs 2400 m/s
Density ρ 2500 kg/m3

Talik layer:
(air phase) P-wave velocity vp 330 m/s

S-wave velocity vs 0 m/s
Density ρ 1.25 kg/m3

Talik layer:
(water phase) P-wave velocity vp 1500 m/s

S-wave velocity vs 0 m/s
Density ρ 1040 kg/m3

Talik layer:
(solid phase) P-wave velocity vp 3800 m/s

S-wave velocity vs 2400 m/s
Density ρ 2500 kg/m3

Dissipative
parameters: Interphase friction θ1 3.36 · 10−12 s

Interphase friction θ2 3.36 · 10−7 s
Relaxation time τ 10−6 s

x2 = 0 of the V 2 component simulated for the porous solid+water medium
with the parameters from Table 1, volume phase fractions α0

2 = 0.3, α0
3 = 0.7,

relaxation time τ = 5 · 10−7 and di�erent values of interfacial friction θ2 as
shown in Fig. 4. The comparison shows that interfacial friction has almost
no e�ect on the propagation velocity and amplitude of the fast P-wave. How-
ever, the slow P-wave responds to this in�uence by attenuating its amplitude.
The velocity of the slow P-wave also does not change signi�cantly. It can be
concluded that interfacial friction mainly a�ects the amplitude of the Biot
wave, and the smaller the value of θ2, the smaller the amplitude of the wave.
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Figure 8. Description of a layered permafrost model with a
talik zone.

Test 4. Let us now analyze the in�uence of the relaxation time on the
wave �eld generation. Consider the same model as in the previous Test 3,
�x the interphase friction θ2 = 3.36 · 10−7 and start to vary the values of the
relaxation time τ .

By analogy with the previous �gures, the horizontal through x2 = 0 wave
�eld slices of the component V 2 for the porous solid+water medium with
parameters from Table1, interphase friction θ2 = 3.36 · 10−7 and di�erent
values of the relaxation time τ are shown in Fig. 6 with the zoomed version
in Fig. 7. As can be seen from the plots, the relaxation time a�ects both
fast and slow P-wave amplitudes and shape. The smaller the τ parameter,
the greater the attenuation.

Test 5. In this section, we analyze the seismic wave propagation for the
permafrost model.

Based on the studies carried out in [18], we will use a typical geological
pro�le of a permafrost area, shown in Fig. 8. The model has an upper active
layer that is subject to seasonal thawing and freezing to a depth of 5 meters.
From 20 to 60 meters is the permafrost zone. Between the active layer and
the permafrost, at a depth of 5 to 20 meters, there is a zone of non-freezing
talik. This layer usually forms when the permafrost thaws due to climate
change or other factors. Below 60 meters there are bedrock formations. The
seismic parameters of the model are given in Table 2.
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(c) Talik layer: α0
1 = 0.1, α0

2 = 0.2, α0
3 = 0.7, θ1 = 3.36 · 10−12, θ2 = 3.36 · 10−7, τ = 10−6

Figure 9. Snapshots of the wave �eld component V 2 for model
with talik layer at time t = 0.1 s.
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Figure 10. Seismograms of the V 2 velocity recorded in re-
ceivers on the free surface with a step 0.2m for two models
with Talik layer:
(a) α0

1 = 0.001, α0
2 = 0.2, α0

3 = 0.799, θ1 = θ2 = ∞, τ = ∞;
(b) α0

1 = 0.1, α0
2 = 0.2, α0

3 = 0.7, θ1 = 3.36 · 10−12, θ2 =
3.36 · 10−7, τ = 10−6.

Several numerical experiments have been carried out assuming that the
phase ratio in the talik zone varies as well as the magnitude of the interfacial
friction and the relaxation time. We assume that during heating or freezing,
the proportion of air and liquid phases in this layer can change, leading to
a change in the phase ratio in the mathematical model. The aim of these
experiments was to demonstrate the signi�cant in�uence of the phase ratio
in poroelastic media on the behavior of the seismic wave �eld.

Simulations were performed for a computational model of 3000∗1250 grid
nodes with a uniform spatial grid cell of 0.2 m and a time step of 2.5 · 10−5

s up to time t = 0.1 s. The vertical source with frequency f0 = 150 Hz was
located on a free surface in the center.

Fig. 9 shows snapshots of the wave �eld component V 2 for the model
with talik layer at time t = 0.1 s. We consider three variants of talik layer
content:

• α0
1 = 0.001, α0

2 = 0.2, α0
3 = 0.799, θ1 = θ2 = ∞, τ = ∞ ;

• α0
1 = 0.001, α0

2 = 0.2, α0
3 = 0.799, θ1 = 3.36 · 10−12, θ2 = 3.36 ·

10−7, τ = 10−6 ;
• α0

1 = 0.1, α0
2 = 0.2, α0

3 = 0.7, θ1 = 3.36 · 10−12, θ2 = 3.36 · 10−7, τ =
10−6.

We see that adding dissipative mechanisms and increasing the air content
in the talik formation leads to a change in the wave �eld behavior. As the
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air content of the layer increases, this change becomes signi�cant. This fact
is con�rmed by comparing seismogram of the V 2 velocity recorded in free
surface receivers with 0.2 m spacing for two cases in Fig. 10.

5 Conclusion

The behavior of wave �elds under temperature variations in a porous
medium saturated with a mixture of liquid and gas was studied. The mathe-
matical model is based on Hyperbolic Thermodynamically Compatible (HTC)
systems theory, and its governing equations are applicable for the description
of a compressible two-�uid mixture �ow in a deformed porous medium. A
linearized version of the equations for small amplitude wave propagation is
derived and used for numerical modeling of seismic wave �elds in poroelastic
media.

In order to verify the obtained system of equations, a series of numerical
tests were carried out. It has been shown that the proposed model works
even in limiting cases when the volume fraction of some phases becomes 1,
i.e. when the porous medium becomes pure elastic. The results obtained
are consistent with the general theory of porous media and, as in the Biot
model, the appearance of slow P-waves is observed. The calculated values
of the wave velocities agree with the theoretical ones with an accuracy up to
the error of the �nite di�erence scheme.

The next step in the veri�cation of the mathematical HTC model was
to investigate the mechanisms of seismic wave attenuation included in the
system of equations. It should be noted that the main causes of seismic
energy absorption in poroelastic media are internal interfacial friction and
stress relaxation, which in turn depend on pressure, temperature changes
and, consequently, changes in the phase composition of the porous medium.
Numerical experiments have shown that interfacial friction mainly a�ects the
attenuation of the slow Biot P-wave, while the term responsible for shear
stress relaxation a�ects the attenuation of the amplitudes of the fast and
slow P-waves. Note that in the seismic frequency range, the slow P-wave
attenuates very quickly and is not taken into account when interpreting
seismic data.

We have also used the HTC model to simulate seismic wave propagation
for a permafrost model with a talik and active layers. By varying the gas
and liquid phase content and the relaxation mechanisms in the talik layer,
we have shown their signi�cant in�uence on seismic waves and the need for
more speci�c models to simulate seismic waves in thawing zones.

Appendix

In Appendix a numerical scheme obtained by the staggered-grid �nite
di�erence approach for the approximation of the system (25) is presented.
The derivation of the scheme is done by analogy with [10], [16].
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Figure 11. The relative position of deviatoric stresses, pres-
sure, mixture velocities and relative velocities on the stag-
gered grid.

First, within the (t, x1, x2) time-space framework, we construct a grid with

integer nodes at tn = n∆t, xi1 = i∆x1, x
j
2 = j∆x2 and semi-integer nodes at

tn+1/2 = (n+1/2)∆t, x
i+1/2
1 = (i+1/2)∆x1, x

j+1/2
2 = (j +1/2)∆x2, where

∆t, ∆x1, ∆x2 represent the grid spacings in time and space.
The staggered-grid �nite di�erence method is based on the �nite volume

discretization method presented in particular in [19], and is often applied
to systems of equations derived from physical conservation laws. A key ad-
vantage of this approach is that it eliminates the need to approximate �uxes
during the solution as the �ux values are known, increasing the e�ciency and
reliability of the method. As part of this technique, we de�ne the stresses and
velocities at di�erent grid points in space and time to provide a fourth-order
accuracy approximation with a minimal di�erence scheme template.

The material parameters are assumed to remain constant within each grid

cell [x
i−1/2
1 , x

i+1/2
1 ]× [x

j−1/2
2 , x

j+1/2
2 ], allowing potential discontinuities along

the grid boundaries.
The mixture velocity V 1 and the relative velocities W 1

1 ,W
1
2 are de�ned

in nodes (n, i+1/2, j) and are denoted (V 1)ni+1/2,j , (W
1
1 )

n
i+1/2,j , (W

1
2 )

n
i+1/2,j .

Similarly, the components V 2,W 2
1 ,W

2
2 are de�ned at the nodes (n, i, j+1/2)

and are denoted as (V 2)ni,j+1/2 and (W 2
1 )

n
i,j+1/2, (W

2
2 )

n
i,j+1/2.

The pressure and deviatoric stresses are assigned to the integer nodes in

space and semi-integer nodes in time (n+ 1/2, i, j) as (P )
n+1/2
i,j , (Σ11)

n+1/2
i,j ,

(Σ22)
n+1/2
i,j , and the shear stress is assigned to the nodes (n+1/2, i+1/2, j+

1/2) and is denoted as (Σ12)
n+1/2
i+1/2,j+1/2. The spatial arrangement of the nodes

on the staggered grid is shown in Fig.11.
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For compactness, let us introduce a few notations for a discrete function

fni,j = f(tn, xi1, x
j
2):

• Second-order central di�erence operators

Dt[f ]
n
i,j =

(f)
n+1/2
i,j − (f)

n−1/2
i,j

∆t
, At[f ]

n
i,j =

(f)
n+1/2
i,j + (f)

n−1/2
i,j

2
, (35)

• Fourth-order central di�erence operators (Levander stencil)

D1[f ]
n
i,j =

1

∆x1

{

9

8

(

(f)ni+1/2,j − (f)ni−1/2,j

)

−

1

24

(

(f)ni+3/2,j − (f)ni−3/2,j

)

}

, (36)

D2[f ]
n
i,j =

1

∆x2

{

9

8

(

(f)ni,j+1/2 − (f)ni,j−1/2

)

−

1

24

(

(f)ni,j+3/2 − (f)ni,j−3/2

)

}

, (37)

• Volumetric arithmetic averaging

⟨f⟩ni+1/2,j = (fni,j + fni+1,j)/2, ⟨f⟩ni,j+1/2 = (fni,j + fni,j+1)/2, (38)

• Harmonic averaging by [20]

{f}ni+1/2,j+1/2 =

[

1

4

(

1

fni,j
+

1

fni+1,j

+
1

fni,j+1

+
1

fni+1,j+1

)]

−1

. (39)

Using these notation, the �nite di�erence equations can be written as
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Dt[V
1]
n−1/2
i+1/2,j = −

〈

1/ρ0
〉

i+1/2,j
D1[P ]

n−1/2
i+1/2,j+

+
〈

1/ρ0
〉

i+1/2,j

(

D1[Σ11]
n−1/2
i+1/2,j +D2[Σ12]

n−1/2
i+1/2,j

)

+ (Φ1)
n−1/2
i+1/2,j ,

Dt[V
2]
n−1/2
i,j+1/2 = −

〈

1/ρ0
〉

i,j+1/2
D2[P ]

n−1/2
i,j+1/2+

+
〈

1/ρ0
〉

i,j+1/2

(

D1[Σ12]
n−1/2
i,j+1/2 +D2[Σ22]

n−1/2
i,j+1/2

)

+ (Φ2)
n−1/2
i,j+1/2,

Dt[W
1
1 ]

n−1/2
i+1/2,j = −

〈

1/ρ01 − 1/ρ03
〉

i+1/2,j
D1[P ]

n−1/2
i+1/2,j −At[Λ

1
1]
n−1/2
i+1/2,j ,

Dt[W
1
2 ]

n−1/2
i+1/2,j = −

〈

1/ρ02 − 1/ρ03
〉

i+1/2,j
D1[P ]

n−1/2
i+1/2,j −At[Λ

1
2]
n−1/2
i+1/2,j ,

Dt[W
2
1 ]

n−1/2
i,j+1/2 = −

〈

1/ρ01 − 1/ρ03
〉

i,j+1/2
D2[P ]

n−1/2
i,j+1/2 −At[Λ

2
1]
n−1/2
i,j+1/2,

Dt[W
2
2 ]

n−1/2
i,j+1/2 = −

〈

1/ρ02 − 1/ρ03
〉

i,j+1/2
D2[P ]

n−1/2
i,j+1/2 −At[Λ

2
2]
n−1/2
i,j+1/2,

Dt[P ]
n
i,j = −(K)i,j

(

D1[V
1]ni,j +D2[V

2]ni,j

)

−

−(K ′

1)i,j

(

D1[W
1
1 ]

n
i,j +D2[W

2
1 ]

n
i,j

)

− (K ′

2)i,j

(

D1[W
1
2 ]

n
i,j +D2[W

2
2 ]

n
i,j

)

,

Dt[Σ11]
n
i,j = (µ)i,j

(

4
3D1[V

1]ni,j −
2
3D2[V

2]ni,j

)

− (1/τ)i,jAt[Σ11]
n
i,j ,

Dt[Σ22]
n
i,j = (µ)i,j

(

4
3D2[V

2]ni,j −
2
3D1[V

1]ni,j

)

− (1/τ)i,jAt[Σ22]
n
i,j ,

Dt[Σ12]
n
i+1/2,j+1/2 = {µ}i+1/2,j+1/2

(

D1[V
2]ni+1/2,j+1/2 +D2[V

1]ni+1/2,j+1/2

)

−

−{1/τ}i+1/2,j+1/2At[Σ12]
n
i+1/2,j+1/2.

The scheme obtained is an explicit �nite di�erence scheme of forth-order
accuracy in time and space for a homogeneous elastic medium. The stability
conditions and dispersion properties can be found in [15].
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